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Abstract—It has been shown, using both Swenson’s data at 4:2°K and Bridgman’s data at room
temperature, that the alkali metals, which do not follow Bridgman’s empirical law, do follow Tait’s
Law. Both Bridgman’s empirical equation and Levitt’s high pressure empirical approach are shown
to be special cases of Tait’s Law. Bridgman'’s series of data up to 40,000 kg/cm? is shown to be about
as reliable as his 100,000 kg/cm? data. Use of the Tait equation, which is founded on the strict
theoretical ground of association theory, allows data to be smoothed on a theoretical basis rather than
on a strictly empirical one. Since Tait’s Law is derived without assumptions from the general
association equation of state, it has now been shown that this equation of state is applicable to gases,
liquids and most likely solids. Data for solids which is not consistent with this treatment should be
held as suspect or non-continuous over the pressure range being considered.

1. INTRODUCTION
A number of investigationsI=4) have shown
empirically that Tait’s Law [equation (1)] which
describes the isothermal compressibility, is obeyed
quite exactly by large numbers of pure liquids,
organic and inorganic; by mixture of liquids; and
by solutions of ionic salts.
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This empirical law has been theoretically derived
from the association equation of state®.6) and the
meaning of the experimental parameters, J and L,
has been given in terms of the quantities entering
from association theory.(”) From this development
by association theory it appears that the structure
of liquids is essentially similar to that of poly-
crystalline solids. It is well known that poly-
crystalline solids consist of small crystallites in
which the arrangement of the atoms or molecules is
symmetrical; these -crystallites are connected by
defect regions which contain smaller aggregates or
single atoms. In a similar way, it appears that
liquids consist of clusters of atoms or molecules
scparated by defect regions, which contain voids
and smaller aggregates. Just as the crystallites in
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polycrystalline solids are held together by defect
regions, so the liquid clusters are held together by
the defect molecules.

The outstanding difference between the two
states is concerned with the differences in sym-
metry of packing that exist. While solid crystal-
lites exhibit exact symmetries which may be
3-, 4-, or 6-fold (or even less), the symmetries in
liquids are not exact and are approximately 5-fold.
By exact symmetries it is meant that no matter
what the order of the symmetry is, each atom or
molecule in the crystal array has an assigned posi-
tion around which it vibrates. The balance of
forces in the array is such that the equilibrium
position of each atom can be considered fixed or,
put in other words, that there is a high potential
barrier around each site. On the other hand, in
liquids the symmetry in the cluster is apparently
an approximate 5-fold symmetry.®) In contrast
to the exact symmetrics existing in solids, atoms
packed in 5-fold symmetry give rise to many small
voids in the structure. Because of the arrangement
of these voids, many equivalent structures (de-
generate) exist. The energy barrier between these
structures appears to be exceedingly small, so that
the atoms in the liquid structure upon vibration do
not always return to a fixed equilibrium position.
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This is why the symmetry is only an approximate
symmetry and not an exact one. Iive-fold sym-
metry does not allow the packing of atoms in space
to proceed in an exactly ordered fashion. Because
of the mobility in the geometric orientation of the
molecules in the clusters, the acquisition of in-
formation regarding their structure is quite diffi-
cult. However, it has been shown geometrically,
that in clusters of small size, 5-fold symmetry
gives rise to more bonds than close packing does.
From this fact comes the stability of the five-
symmetric structure in liquids and also the diffi-
culties associated with the conversion of liquids to
solids (homogeneous nucleation).(®)

Going back to Tait’s Law, it scems strange that
liquids having one sort of symmetry should obey
Tait’s Law for the isothermal compressibility,
while polycrystalline solids which are very much
like liquids except in the matter of symmetrics,
should follow other laws. This is especially so in
view of the meaning ascribed to the T'ait cocfli-
cients by association theory. This paper is then
devoted to an examination of the behavior of solids
undergoing isothermal compression in light of
Tait’s Law.

2. THEORY

The experimental difficulties in determining the
isothermal compressibility are considerable.(10)
These difficulties are further compounded by the
fact that there has been in the past no theoretical
generalization, which could be used to evaluate the
meaning of the values that come from such
measurcments. This lack has resulted in the
representation of the various experimental results
in a variety of empirical or semi-empirical laws.(11)
Bridgman in his work has found that he could
express the compressibility of many but not all
solids empirically by using the first two terms of an
alternating power series in terms of the pressure
[equation (2)].

—Av[vg = AP— BP?+ higher terms (2)

This particular series which was probably chosen
by Bridgman on purely empirical grounds of good

fit can be shown to have a theoretical basis and to

be a truncated version of Tait’s Law. Differentiat-
ing equation (2) we have

—(0v/0P)r = Avg—2BuoP + higher terms  (3)
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The expansion of the denominator in Tait’s Law
[equation (1)] yields
+ e ) )

—(0v/oP)p = J(L+P)71
( 1 P P2 p3

It can readily be seen that equation (3) is identical

to equation (4) if

+
L Lz L3 L

A‘vo = J/L
2Bvy = J|L? )

etc. for higher terms. )

In Bridgman’s work he found that the higher
terms could be neglected for most solids. The
necessary condition here is that

PIL <1

If this condition holds then a slight adjustment of
the retained cocflicients will fit the data, especially
if a too precise fit is not demanded. Further, the
experimental discrepancies in the data render
exact fits unnecessary.

Another empirical approach at high pressures
was presented by LeviTT(12) which he portrays as
“A limiting law at the upper end of the pressure
range.” He has applied this approach to gases,
liquids and solids at high pressures with success.
His approach leads to equation (6)
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oP)r BP
with B a constant. If one compares this with the

Tait equation [equation (4)], one sees that at high
pressures where P > L, if one sets

B =] @)

we can obtain equation (6). Since (dv/ dP) decreases
with the rise in pressure, the volume approaches a
constant value and thus, as a first approximation,
22 and hence B may be taken as constants. Thus
this empirical approach is an approximation form
of the Tait equation. In another publication we
show the exact nature of this approximation. (@4
It can be concluded that, in the limits at least,
Tait’s Law is obeyed by most solids. The question
then arises: Is Tait’s Law obeyed by such sub-

stances whose compressibilities cannot be ex-

pressed by the simple two-term power series of
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Bridgman? The first evidence in favor of this
hypothesis is the work of Coox(® who has found
that many complex substances, such as explosives,
follow Tait's Law upon isothermal compression,
although he did not recognize that the equation he
was using was indeed Tait’s Law. Iurther,
BeEcROFT and SWENsON(?) have determined com-
pressibilities on sodium up to 20,000 atm. at
various temperatures and have found that they
could fit their data fairly well with a three-term
alternating pressure series. Essentially, they are
truncating theseries in equation (4)at the third term
and empirically adjusting the constants. These two
bits of evidence point towards the idea that Tait’s
Law should be valid for solids, for which the
simple Bridgman approximation is insufficient.
What is needed to define the whole validity of the
law are sets of data over wide ranges of tempera-
turc and pressure on substances which do not obey
the simple law.

Such data is available in the literature on the
alkali metals. Bridgman reports several different
runs on the alkali metals, some of which go up to
100,000 kg/em?. This work was done around room
temperature. The various sets of data that Bridg-
man gives are contradictory. The latest of these(0)
are entitled “The compression ot 39.substances to
100,000 kg/cm?2”, here called Br III, and “Rough
compressions of 177 substances to 40,000
kg/em?”,14) here called Br II. These two sets of
data were reported simultaneously although the
work was done on different apparatus. An earlier
sct of values, called here Br I, also range to 100,000
kg/em2.45) The results of SWENSON(19) giving the
values of the compressibilities to 10,000 atm. at
42°K have been analyzed. Swenson also reports
work at 77°K but the details given in the paper are
not sufficient for a complete analysis. In some
recent work BEECROFT and SWENsSON(?) have given
results for sodium at various temperatures for
pressures up to 20,000 atm. Analysis of this data
has not been included. Much data on substances
other than alkali metals is available and will be
reported in a subsequent paper.

3. CALCULATIONS

The calculations were done on an IBM 1620
computer. The data was all converted to pressure—
specific volume data. Since the number of points
was generally limited and unequally spaced, the

data were converted by Lagrangian interpola-
tion8) (5 or 7 point) to a table of equally spaced
values; Newton’s interpolation formula@9 did not
yield as consistent a set of data. IFrom this table of
data the value of (P/dv)p was determined numeri-
cally using a 7 point Lagrangian differentiation.(20)
If the Tait equation [equation (4)] is rewritten as

(@Plovyr = — = =
)p = ————
> J 7

then determining the best straight line of (9P/v)p
versus P will give us L/J and 1/J from which L
and J can be computed readily. This was accom-
plished by a least squares technique, minimizing
the mean square deviation in (9P/dv)p and con-
sidering the error in P to be negligible. This
technique was tested on values determined from an
analytic curve and gave excellent agreement. One
point needs to be mentioned; since the values of
(@P[dv) are part original data and part interpolated
data, the curve of these combined data will sys-
tematically reproduce the random variations of the
original data. The derivatives derived from this
data will accordingly mirror these systematic
deviations in a magnified fashion giving rise to a
curve that crosses the straight Tait line several
times in a seemingly systematicway. The systematic

(8)

_portion of this curve is however a computational

artifice and should not be considered a systematic
deviation.

The lithium data

Figure la presents the graph of the derivative
versus the pressure for the Bridgman work. The
straight line is the least squares fit using the com-
bined Br 1T and Br III data. The two sets of data
do not seem to form a thoroughly consistent
straight line. Apparently the derivatives of the
Br II set are lower than those of the Br III data,
in agrecment with the findings of Bridgman who
stated that the 40,000 kg/cm? apparatus gives a
somewhat greater compressibility in the range
25,000 to 40,000 kg/cm? than the 100,000 kg/cm?
apparatus.(10) This discrepancy is found with all
the alkali metals considered here and is greatly
amplificd by the use of the derivative rather than
the volume.

In addition to the variations due to the use of two
different apparatus, the disagreement between

B X S g
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Fi16. 1a. Graph of —(8p/dv)r vs. pressure in kg/em? for lithium data of Bridgman
at room temperature. 3 Bridgman IIT experimental points, © Bridgman II
experimental points and O Bridgman I experimental points. represents
the least squares line obtained using the Br II and Br III data. 1b. Graph of
—(p/v)r vs. in kg/em? for sodium data of Bridgman at room temperature, (»
Bridgman III experimental points, © Bridgman II experimental points at O

Bridgman I experimental points.

o

these sets of data may be attributed partly to the
fact that an aluminum sheath was used in per-
forming the Br III measurements, while no such
encasement was used in the Br II data.

Also shown on Fig. 1a, although not used to
determine the best straight line, is the Br I data.
It is quite evident that these points do not fit the
same straight line. Similar disagreement is found
with all the metals considered except Cesium for
which there is no Br I data. Factors responsible
probably are: (1) the values reported as Br I were
‘corrected” by Bridgman so as to agree with an
carlier sct of measurements which he believed to be
supcrior; (2) a copper sheath was usced around the
sample. The fact that the copper is harder than the
aluminum sheath used in the Br ITI determinations
may partially account for this discrepancy. An
indication that the copper sheath is at least partly
responsible for the discrepancy is given by the one
run of lithium without this sheath in the Br I set of
measurements, where the compression was much
smaller.

represents the least squares line obtained
using the BrII and Br III data.

Using the individual data of Br II and Br III
leads to an excellent fit of the points to a least
squares line, but we considered the combined
Br II, Br III line a better compromise.

Figure 2 presents the Swenson data at 4-2°K.
Here the derivative scale is eight times greater,

and the pressure scale is ten times greater than in |

the graphs of the Bridgman data. This same scale
is used to present all sets of Swenson data. In this
instance the lowest three reported values of Swen-
son have been omitted. Inclusion of these points
lead to a rather poor fit of the points to the straight
line. The omission of these points is justified on
the grounds that they were not measured values
but obtained by extrapolation, and were admittedly
rather poor. These three lowest points were dis-
carded for cach case of Swenson data presented.

Table 1 gives the cocfficicnts of the best straight
lines through the various sets of data.

The sodium data
Figure 1b shows the combined data for Br II

Metal

Lithium

Sodium

Potassium

Rubidium

Cesium
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Metal Data Temp. Jcm? L, kg/cm? Comments
Lithium BrI Room 0:13135 1520920
G Br 11 Room 0-38805 237690
Br 111 Br 11T Room 0-40657 335616
Br II-Br III Room 0-37210 24211-7 best value at Room Temp.
a 1.“35'5 Swenson 4:2°K 023646 175438 atm  1st 3 pts. omitted
mbined Sodium BrI Room 025933 24612-2
Br 11 Room 0-18222 10313-8
t 4-2°K. ! Br I1I Room 0-21390 28094-1
greater, i Br II-Br II1 Room 0-18556 14416-8 best value at Room Temp.
‘i thasiin i Swenson 4-2°K 0-20303 150250 atm 1st 3 pts. omitted
he scale i Potassium BrI Room 0-32762 217927
i . { Br II Room 0-18413 3455-65 best value at Room Temp.
Inthis Br 111 Room  0-13680 —6828-0
fSwen- | Br 1I-Br III Room 0:14521 —2911-1
> points Swenson 42°K 021976 7363:7 atm  1st 3 pts. omitted
straight Rubidium  Br I Room 0-44719 73493-8
ified on Br II Room 0-10566 2912-5
- Br 111 Room 0-10839 66267
L Br II-Br III Room 0-10446 366075 best value at Room Temp.
rstedty Svenson 42°K 010097 4221-7atm_ 1st3 pts, omitted
!erc dis- Cesium Low pressure :
ented. 0-23,300 kg/cm? Room 011229 5453+45
straight Med. pressure
23300-40000 kg/cm? Room 0-10301 —36-138
High pressure
50000-100,000 kg/cm? Room 0:01856 —39421-8
Swenson 42°K 0-10590 4466°95 atmy  1st 3 pts. omitted
or Br II
[
e — —— P
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-[ap/av] x107*
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F1G. 2. Plot of —(8p/@v) vs. pressure in atm for the Swenson lithium data at

4-2°K. O Swenson experimental values.

the Swenson experimental values.

Table 1. Tait constants of the alkali metals

least squares line obtained from
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and Br III of sodium. Once again the derivative
values of the Br II sct arc low as expected. The
Br I derivative data again is low but scems to run
more or less parallel to the newer data in a manner
that suggests a constant error.

Figure 3a presents the Swenson data at 4-2°KK
and represents a much better fit of the points to the
curve than does the lithium at this temperature.

An analysis of the rather extensive set of sodium

ROBERT GINELL and THOMAS J. QUIGLEY

data run at various temperatures by Beecroft and
Swenson was also run.(1? This study will be pre-
sented in the near future.

The potassium data

Potassium presents a particularly difficult prob-
lem. In Fig. 4 is presented the Bridgman data. Up
to about 60,000 kg/cm2 Br II and Br III points
seem to present a single set of data. Br I seems to

o0 +
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o 2000 4000

L "
6000 8000 10000

PRESSURE in ATMOSPHERES
FiG. 3a. Plot of —(p/&v)r vs. pressure in atm. for the Swenson sodium at 4:2°K;

O Swenson experimental values.

least squares line obtained from the Swen-

son experimental values. 3b. Plot of —(dp/dv)r vs. pressure in atm. for the

Swenson potassium data at 4- 2°K. O Swenson experimental values.
line obtained from the Swenson experimental values.
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- [ap/av] x|07?

o

o
~
o
o
=3
°

40000

6Qo00 80000 100000

PRESSURE in KG/CMZ
F1G. 4. Plot of —(&p/év)r vs. pressure in kg/cm? for the Bridgman potassium data

at room temperatute. () Bridgman III experimental values,
IT experimental values and O Bridgman I experimental values.
squares line obtained by using the Br II and Br III potassium data.
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agree to about 30,000 kg/em? and then deviates
badly. What the points above 60,000 kg/cm? in
Br 111 mean is open to question. The values of L
are unusually low for the Br II, Br III and the
combined Br II-Br III data compared to those of

negative values of L are possible,(? they generally
occur at much higher temperatures closer to the
critical point. In view of the uncertainty in Bridg-
man’s temperatures it can only be hoped new
determinations will be made.

The Swenson potassium data at 4-2°K are pre-
sented in Fig. 3b, and except at the ends a fine fit
is indicated.

lithium and sodium. The negative values obtained
for the combined Br II-Br III and Br III are
to be regarded with extreme suspicion. While

1 Il
40000

+ 1
20000 60000 80000 100000

PRESSURE in KG/CMZ

F16. 5. Plot of —(9p/&v)r vs. pressure in kg/cm? for the Bridgman rubidium data at
room temperature. J Bridgman III experimental values, © Bridgman II experi-
mental values and O Bridgman I experimental values. —— least squares line
’ obtained by using the Br II and Br III rubidium data.
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T1G. 6. Plot of —(8p/dv)r vs. pressure in atm for the Swenson rubidium data
at 42°K. O Swenson experimental values. least squares line obtained by
using the Swenson values,
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The rubidium data

Figure 5 shows the least squares curve for the
combined Br IT and Br III data of rubidium. It is
immediately evident that the two sets seem to form
a single set with the Br II, just slightly lower as
expected. Br I data, as shown, again deviates
badly from the newer measurements being much
lower. In addition the higher points show opposite
deviation and thus must be looked at with a high
degree of suspicion.

Figure 6 shows the Swenson 4-2°K rubidium
data as exhibiting an excellent fit. 2

The cesium data

It has been established that cesium undergoes a
transition from the body-centered cube to the
face-centered arrangement®) at approximately
23,300 kg/cm?2. Another transition has been re-
ported and considered to be due to an electronic
transition at about 45,000 kg/cm?2.(22)

It was thus necessary to treat each range be-
tween transition points as an independent set of
data. The data from 0 to 23,300 kg/cm? were
treated individually as a low pressure set, the data
from 23,300 kg/cm? to 40,000 kg/cm? were treated
as a medium pressure range set, and finally a high
pressure set of data extended from 50,000 to
100,000 kg/cm?, '

Figure 7 (changed scale) presents the low and

mediumrangeset of data. Each set fits its individual |
least squares line very nicely. Figure 8 is a repre-

sentation of the high pressure data in an expanded
scale and is a rather poor fit. Figure 9 presents the
Swenson 4-2°K data of cesium, which again fits
well.

From the results of the analysis of the cesium |
data it can be inferred that a very poor fit of the '

data points to the least square line indicates, that
some sort of transition point may exist in the range
being considered.

The Volumes

The real test of the merit of the values of Jand L
is the fit the volumes derived from them are to the
experimentally determined values of the volume.
Considering equation (1) it is evident that:

P+L P+L
v= vo—Jln( ) = vo—Jln( ) 9)
Py+L const

It is thus secen that once values of J and L are
chosen it is possible to calculate the volume at any
pressure, P. Py and vg are some arbitrary reference
pressure and volume with vg being the volume at

]

o 0000 20000 30000 40000

PRESSURE in KG/CMZ

FI1G. 7. Plot of —(8p/@v)r vs. pressure in kg/cm? for the Bridgman low and medium

pressure range for cesium. Range from 0 to 23,300 kg/cm? represents the low

pressure data as points and the least squares line as the solid line. In the medium

pressure range the data are represented as points and the least squares line as a
solid line on the graph between 23,300 kg/cm? and 40,000 kg/cm?®.
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o -[ap/av]x 107

o 20000
PRESSURE in KG/CM2
F16. 8. Plot of —(9p/dv)r vs. pressure in kg/cm? for the high pressure Bridgman

cesium data at room temperature. O experimental values, least squares
line obtained from using the experimental values.
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2000 4000 6000 000 ' 10000

PRESSURE in ATMOSPHERES

T1G. 9. Plot of —(&p/dv)r vs. pressure in atmospheres for the Swenson cesium
data at 4:2°KK, O Swenson experimental values, —— least squares line from
Swenson values,
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Py. Equation (9) may also be written as
(Po+L) exp(ealJ) = (P+L) exp(o/J)
= const.[exp(vo/J)] = H (10)

where const. is a constant indicated as (Py+ L) in
equation (9). Two methods of the evaluation of the
volume are possible once L and J are decided upon.
First a value of Py may be chosen to correspond to
the pressure at volume ©g and the constant becomes
(Po+L). The second method may be indicated by
equation (10).

Now H may be evaluated at each pressure used
and the average value taken as the overall value of
H. This method has two immediate advantages
over the previous method; (a) all points are treated
as equals in the evaluation of the constant and
thus eliminating the weakness of allowing one pres-
sure to dominate the constant; (b) once an average
value has been determined the deviation of the
individual values from this average may be com-
puted and values having deviations greater than a
set limit may be discarded and a new average com-
puted. The theoretical volumes obtained by this
approach appeared to agree better with the experi-
mental volumes than did the volumes computed
using the approach based on equation (9) for all the
alkali metals. Table 2 gives the data obtained by

THOMAS J. QUIGLEY

this method and also indicates the number of
points eliminated.

Figure 10 shows the specific volume versus pres-
surc graph for the Bridgman data of lithium,
sodium, potassium and rubidium. The points are
the experimentally determined points of Br II and
Br III and the solid line represents the value of the
volume as calculated using equation (10) with the
values of J and L used being those obtained for the
combined Br IT and Br III data.

Figure 11 shows the curves for the three sets of
cesium data. Again the curves are derived from the
J and L values and the points are experimental,
From this graph it would seem that the fit is fairly
good for the three sets of data.

The first method proved to be less satisfactory
than that based on equation (10).

One other factor should be noted in Fig. 10,
that is, that in all cases the Br II and Br III
volumes blend into each other as a single set of
data so that on consideration of the volumes, it
is not easily seen that the two sets of data are not
continuous. Once the derivative curve is used the
discontinuity becomes apparent. That is to say
the use of the derivative approach magnifies any
difference between the scts of data if present.

I'igure 12 shows the volume vs. pressure curve
obtained for the Swenson data. An excellent fit is
again evident.

Table 2. Results of the evaluation of H of equation (10)

No. of
Metal Data pts. Hx10-¢ Comments
Li Br I1 10 2-9710 No pts. discarded
Li Br III 10 2-9459 1 pt. discarded
Li Comb. Br II-III 19 3:6224* No pts. discarded
Na BrII 10 3-0521 1 pt. discarded
Na Br III 10 2-3664 1 pt. discarded
Na Comb. Br, II-III 19 3:2259* 3 pts. discarded
K BrII 10 2-12937* 2 pts. discarded
K Br III ) 10 62631 1 pt. discarded
K Comb. Br II-III 19 5-1668 4 pts. discarded
Rb BrII 10 1-8065 2 pts. discarded
Rb Br III 10 1-8434 1 pt. discarded
Rb Comb. Br II-III 19 1-97998* No pts. discarded
Cs Low P Range 7 0-58228 No pts. discarded
Cs Medium P Range 4 0-58677 No pts. discarded
Cs High P Range 5 24437 No pts. discarded

* Best choice values.
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‘ Fic. 11. Plot of specific volume vs. pressure in kg/cm? for the Bridgman cesium
c data at room temperature. The three sets of data: low pressure, medium pressure
and high pressure, are presented as points. The solid lines represent the

theoretical specific volumes as calculated using equation(10) with the proper J and

L values indicated in Table 1 and the proper H values as indicated in Table 2.
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represents the theoretical specific volumes as calculated using equation (10) with the
proper J and L values for the metal and the proper H value as indicated in Table 2.

4. DISCUSSION

Considering the evidence presented here it
would scem that a plot of P versus (9P/dv)r is
truly a straight line for the alkali metals; that is,
that Tait’s Law is applicable. The question of
whether Tait’s Law is obeyed by all solids cannot
be decided unambiguously without examining
more materials. Particularly interesting will be an
examination of the rare gas solids, data for which
is presented by STEWART.(2%) These values will be
analyzed shortly. "

The precision of Br II and Br III data is about
equal, with the Br II values being slightly lower,
except in the case of potassium, where some
curious deviations occur. These probably are of
experimental origin but perhaps have deeper
meaning.

Since Tait’s Law appears to be the actual law
obeyed by the alkali metals and perhaps many
other substances, it can be used to smooth experi-
mental data on compressibility. The volume versus
pressure graph indicates the soundness of the

values of J and L chosen, a poor fit indicating that
a redetermination of the values is in order.

In this discussion the comparison has been
between liquids and polycrystalline solids. ITow is
this fact to be reconciled with the fact that the
compressibilitics of single crystals are identical to
thosc of polycrystals? The resolution of this
apparent dichotomy is linked with a deeper in-
vestigation of the consequences of the fact that at
least certain solids obey Tait’s Law. Tait’s Law
can be derived free of assumption from the general
equation of state. An examination of this equation
shows that the average particle size (degree of
association) is strongly dependent on the pressure.
A fuller discussion of this subject and the various

conclusions that must be drawn from the applica- |

tion of the general equation will be presented in a
subsequent paper.
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